Server IP : 192.64.118.117 / Your IP : 18.191.125.73 Web Server : LiteSpeed System : Linux premium56.web-hosting.com 4.18.0-513.24.1.lve.1.el8.x86_64 #1 SMP Thu May 9 15:10:09 UTC 2024 x86_64 User : thecgapy ( 1160) PHP Version : 7.4.33 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/typing/tests/data/pass/ |
Upload File : |
from __future__ import annotations from typing import Any import numpy as np from numpy._typing import ArrayLike, _SupportsArray x1: ArrayLike = True x2: ArrayLike = 5 x3: ArrayLike = 1.0 x4: ArrayLike = 1 + 1j x5: ArrayLike = np.int8(1) x6: ArrayLike = np.float64(1) x7: ArrayLike = np.complex128(1) x8: ArrayLike = np.array([1, 2, 3]) x9: ArrayLike = [1, 2, 3] x10: ArrayLike = (1, 2, 3) x11: ArrayLike = "foo" x12: ArrayLike = memoryview(b'foo') class A: def __array__(self, dtype: None | np.dtype[Any] = None) -> np.ndarray: return np.array([1, 2, 3]) x13: ArrayLike = A() scalar: _SupportsArray = np.int64(1) scalar.__array__() array: _SupportsArray = np.array(1) array.__array__() a: _SupportsArray = A() a.__array__() a.__array__() # Escape hatch for when you mean to make something like an object # array. object_array_scalar: Any = (i for i in range(10)) np.array(object_array_scalar)